Blur Invariant Image Forgery Detection Method Using Local Phase Quantization

نویسندگان

  • Beste Ustubioglu
  • Elif Baykal
  • Gul Muzaffer
  • Guzin Ulutas
چکیده

With the rapid development of powerful image, editing software makes the forgery of the digital image easy. Researchers proposed methods to cope with image authentication in recent years. We proposed a passive image authentication technique to determine the copy move forgery that copied a part of an image and pasted it on the other region in the same image. First, the method divides the image into overlapping blocks. It uses LPQ (local phase quantization) to label each block. The column average value of labeled blocks constitutes the feature vector for the block. Similarity among the feature vectors gives a clue about the forgery. Local phase quantization has not been used to detect copy move forgery in the literature before. Experimental results show that, the method has higher accuracy ratios and lower false negative values under blurring operation at high levels compared to other methods. Our method can also detect multiple copy move forgery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of Copy-Move Forgery in Digital Images Using Scale Invariant Feature Transform Algorithm and the Spearman Relationship

Increased popularity of digital media and image editing software has led to the spread of multimedia content forgery for various purposes. Undoubtedly, law and forensic medicine experts require trustworthy and non-forged images to enforce rights. Copy-move forgery is the most common type of manipulation of digital images. Copy-move forgery is used to hide an area of the image or to repeat a por...

متن کامل

Disguised Face Recognition by Using Local Phase Quantization and Singular Value Decomposition

Disguised face recognition is a major challenge in the field of face recognition which has been taken less attention. Therefore, in this paper a disguised face recognition algorithm based on Local Phase Quantization (LPQ) method and Singular Value Decomposition (SVD) is presented which deals with two main challenges. The first challenge is when an individual intentionally alters the appearance ...

متن کامل

Image Forgery Detection using Multi Scale Entropy Filter and Local Phase Quantization

Performing digital image forgery is very easy due to highly precise image editing tools. There is a concomitant need to have some mechanism to differentiate between a forged image and the original image. In this paper, we propose a passive image forgery detection method that uses entropy filter and local phase quantization (LPQ) texture operator. The entropy filter generally highlights the boun...

متن کامل

Blur Insensitive Texture Classification Using Local Phase Quantization

In this paper, we propose a new descriptor for texture classification that is robust to image blurring. The descriptor utilizes phase information computed locally in a window for every image position. The phases of the four low-frequency coefficients are decorrelated and uniformly quantized in an eight-dimensional space. A histogram of the resulting code words is created and used as a feature i...

متن کامل

Blur invariant pattern recognition and registration in the Fourier domain

Pattern recognition and registration are integral elements of computer vision, which considers image patterns. This thesis presents novel blur, and combined blur and geometric invariant features for pattern recognition and registration related to images. These global or local features are based on the Fourier transform phase, and are invariant or insensitive to image blurring with a centrally s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016